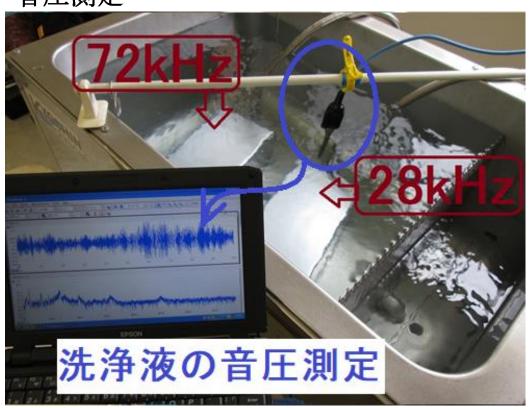
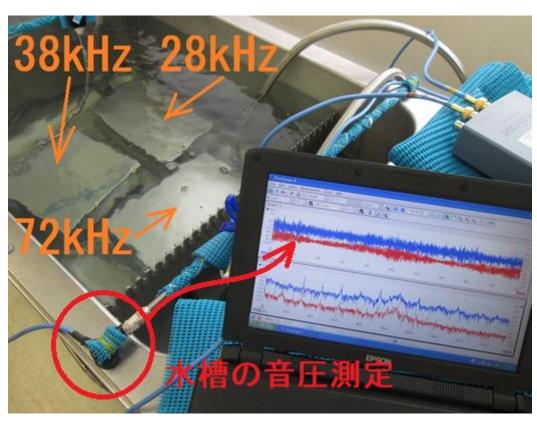

超音波の音圧データ解析技術(R言語) 超音波伝搬状態の解析・評価

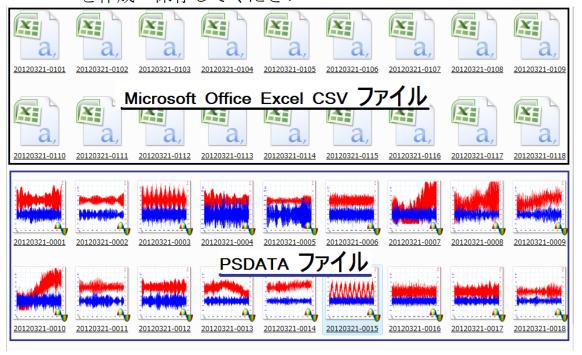

音圧グラフ 横軸:時間 縦軸:音圧



音圧データの解析(自己相関)

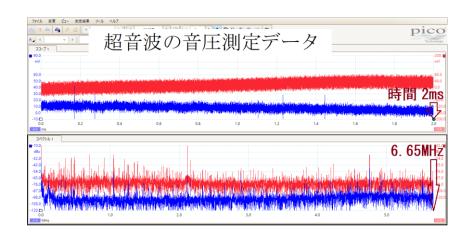
超音波システム研究所

音圧測定



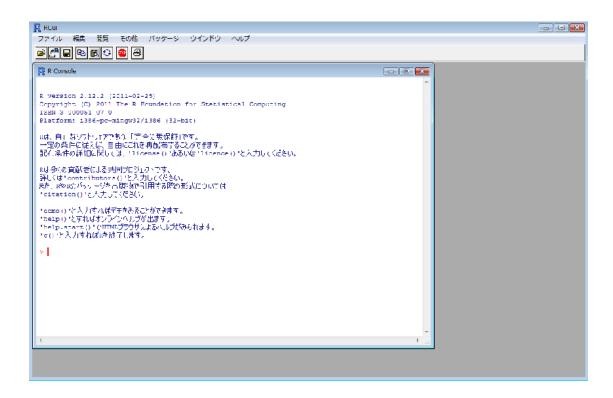
1. 準備

解析用データの確認 超音波の音圧測定データ

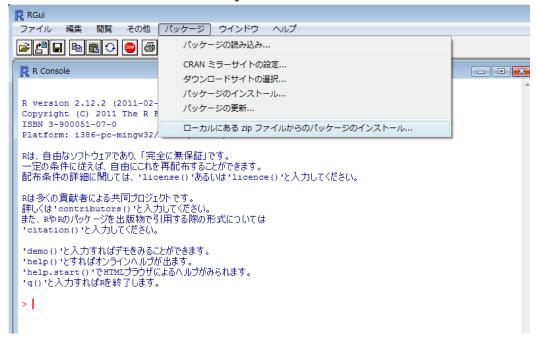

(例 オシロスコープの測定データ形式 PSDATA ファイル)から解析用の

Microsoft Office Excel CSV ファイル を作成・保存してください

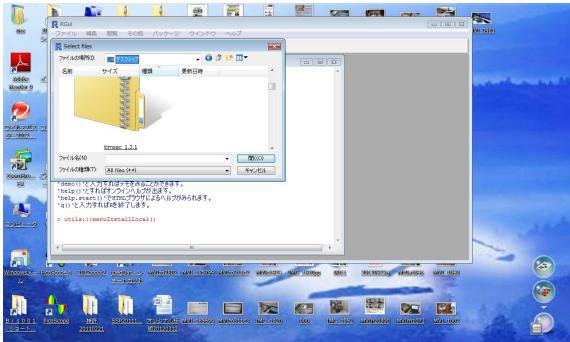
例


□ 5 * ♂ * □ =												
Microsoft Office Excel CSV ファイル												
10 Typiciosoft Office Exect Co V > / 1/*												
Δ	Α	В	С	D	E	F	G	Н	1	J	K	L
1	時間	c h A	c h B									
2	(ms)	(mV)	(mV)		サ	ンフ	゚リン	ノグト	5間			
3												
4	0	3.149606	77.16534		0.	000	8800	m s				
5	0.000088	-4.72441	78.74015									
6	0.000176	11.02362	0	E	■ ㅗ .	8刀 七二	EFI 2de	*				
7	0.000264	3.149606	-23.6221	I	反人	件们	周波	釵				
8	0.000352	4.724409	42.51968	1	/0	$\Lambda \Lambda \Lambda \Lambda$	00-	11 9	MU			
9	0.00044	7.874015	66.14173		/ U.	UUUU	88=1	ļ I. J	MITZ			
10	0.000528	14.17323	0	1	1 2	MU- /	2 —	0	-			
11	0.000616	9.448818	-44.0945		1. J	MINZ/	Z —	b . b	5MH	Z		
12	0.000704	9.448818	12.59842									
13	0.000792	6.299212	81.88976									

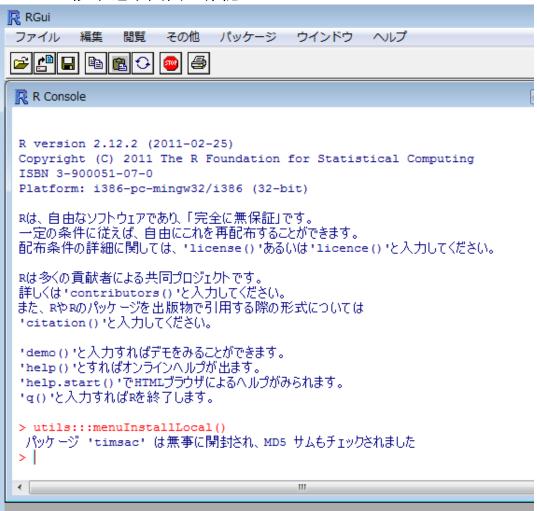
2. 解析ソフトの立ち上げ


ダブルクリックして立ち上げる

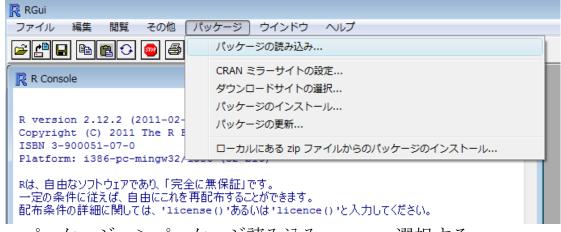
3. 解析ソフトの読み込み


3-1:パッケージー>

ローカルにあるzipファイルからの・・・・

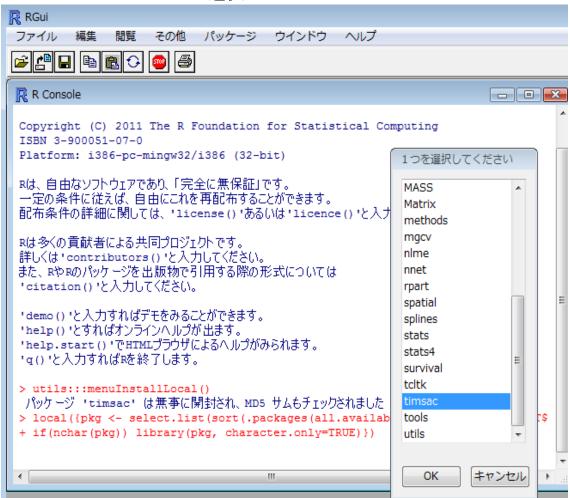

3-2:デスクトップのzipファイル

TIMSAC1.2.1 を選択する

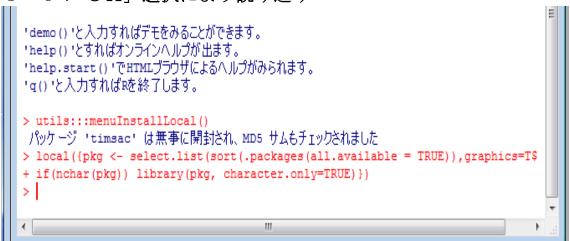


Package'timsac' (TimeSeriesAnalysisandControlPackage) Functionsforstatisticalanalysis,predictionandcontroloftimeseriesbasedmainlyonAkaikeandNakagawa(1988)

3-3:読み込み画面の確認



3-4:パッケージの読み込み



パッケージー>パッケージ読み込み・・・ 選択する

3-5:timsacの選択

3-6: [OK] 選択により読み込み

以上で解析準備完了です

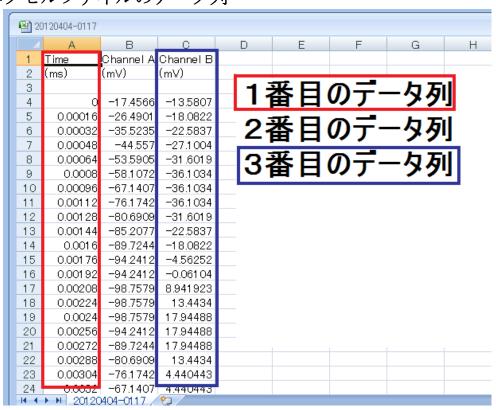
参考

バイスペクトル

バイスペクトルは以下のように

周波数 f1、f2、f1+f2 のスペクトルの積で表すことができる。

B(f1, f2) = X(f1)Y(f2)Z(f1+f2)


主要周波数が f1 であるとき、

f1 + f1 = f2、f1 + f2 = f3 で表される f2、f3 という周波数成分が存在すればバイスペクトルは値をもつ。

これは主要周波数 f1 の整数倍の周波数成分を持つこと と同等であるので、バイスペクトルを評価することにより、 **高調波の存在を評価できる**。

詳しい説明は専門書・・・を読んで確認してください

エクセルファイルのデータ列

解析コマンド

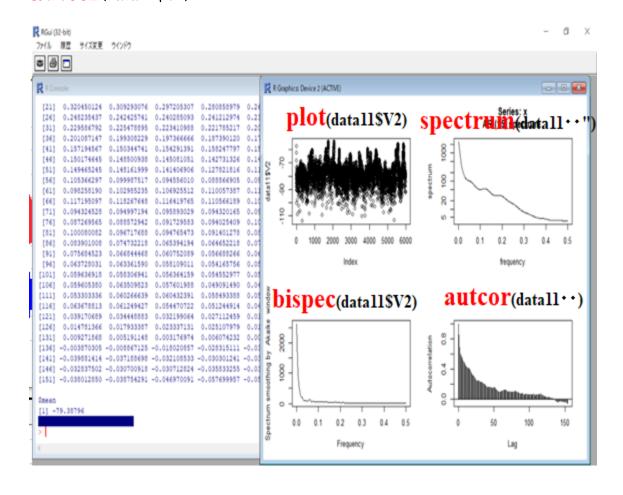
dev.off()

par(mfrow=c(2,2)) : 2行2列のグラフ表示設定

data11 <- read.table("C:/20191220/20191220-0030/20191220-0030_12.csv", skip=6, sep=",", nrows=6000)

plot(data11\$V2)

data11 <- read.table("C:/20191220/20191220-0030/20191220-0030_12.csv", skip=6, sep=",", nrows=6000)


spectrum(data11\$V2,method="ar")

 $\begin{array}{lll} data11 & <& read.table("C:/20191220/20191220-0030/20191220-0030_12.csv", skip=6, sep=",", nrows=6000) \end{array}$

bispec(data11\$V2)

data11 <- read.table("C:/20191220/20191220-0030/20191220-0030_12.csv", skip=6, sep=",", nrows=6000)

autcor(data11\$V2)

dev.off()

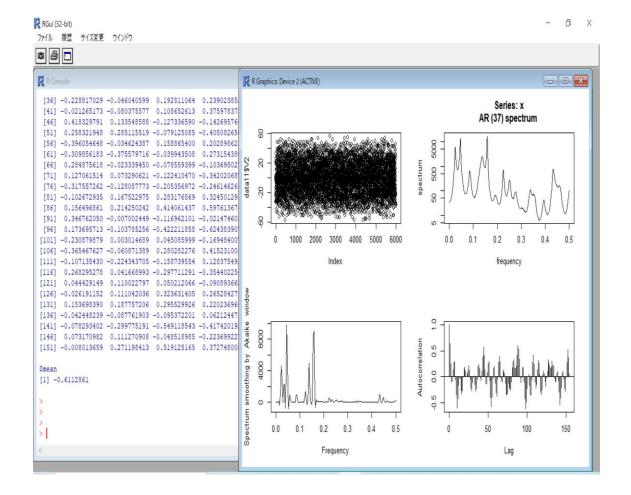
解説 終了

plot(data11\$V2)

解説 **data11** の **2** 番目のデータ列(1 c h の測定データ)に対して プロット(音圧測定データのグラフ作成)を行う

spectrum(data11\$V2,method="ar")

解説 data11 の 2 番目のデータ列(1 c h の測定データ)に対して A R (自己回帰) モデルによる スペクトル解析を行う


bispec(data11\$V2)

解説 data11 の 2 番目のデータ列(1 c h の測定データ)に対して バイスペクトル解析を行う

autcor(data11\$V2)

解説 data11 の 2 番目のデータ列(1 c h の測定データ)に対して 自己相関の解析を行う

dev.off()

参考

1) 以下のようにテキストデータをコピーしてRの画面にペーストすると 1 ch 2 chのデータ比較ができます

dev.off()
par(mfrow=c(4,2))

data11 <- read.table("C:/20191220/20191220-0022/20191220-0022_12.csv", skip=6, sep=",", nrows=6000)

plot(data11\$V2)

 $\begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_12.csv", & skip=6, sep=",", nrows=6000) \end{array}$

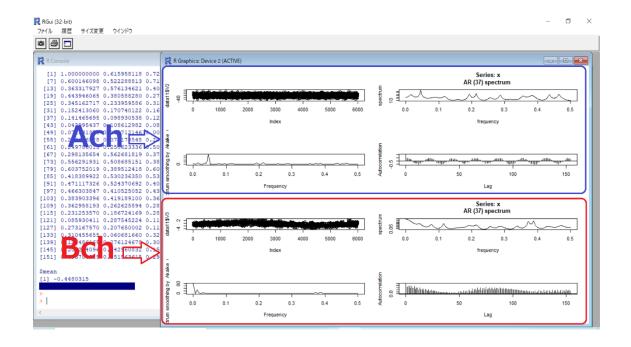
spectrum(data11\$V2,method="ar")

 $\label{eq:data11} $$ $\operatorname{read.table}(\c''C:/20191220/20191220-0022/20191220-0022_12.csv'', skip=6, sep=",", nrows=6000)$$

bispec(data11\$V2)

data11 <- read.table ("C:/20191220/20191220-0022/20191220-0022_12.csv", skip=6, sep=",", nrows=6000) autcor (data11\$V2)

 $\begin{array}{lll} data11 &<& read.table("C:/20191220/20191220-0022/20191220-0022_12.csv", & skip=6, \\ sep=",", nrows=6000) & plot(data11\$V3) & \\ \end{array}$


data11 <- read.table("C:/20191220/20191220-0022/20191220-0022_12.csv", skip=6, sep=",", nrows=6000)

spectrum(data11\$V3,method="ar")

 $\label{lem:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_12.csv", & skip=6, sep=",", nrows=6000) \end{array}$

bispec(data11\$V3)

 $\begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_12.csv", & skip=6, sep=",", nrows=6000) \\ autcor(data11$V3) && \end{array}$

2) 以下のようにテキストデータをコピーしてRの画面にペーストすると すべての解析を連続的に行います

dev.off()

par(mfrow=c(2,2))

 $\label{lem:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_12.csv", & skip=6, sep=",", nrows=6000) \end{array}$

plot(data11\$V2)

data11 <- read.table("C:/20191220/20191220-0022/20191220-0022_12.csv", skip=6, sep=",", nrows=6000)

spectrum(data11\$V2,method="ar")

 $\label{eq:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_12.csv", & skip=6, sep=",", nrows=6000) \end{array}$

bispec(data11\$V2)

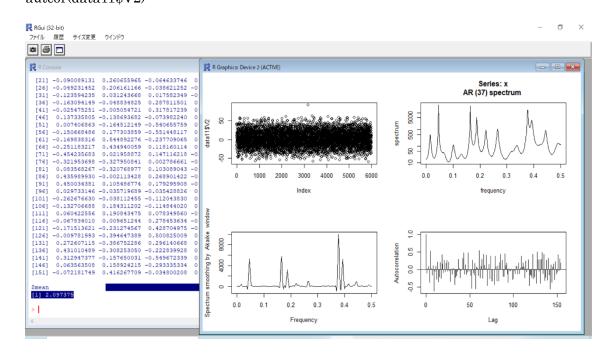
data11 <- read.table("C:/20191220/20191220-0022/20191220-0022_12.csv", skip=6, sep=",", nrows=6000)

autcor(data11\$V2)

.

 $\label{eq:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_24.csv", & skip=6, sep=",", nrows=6000) \end{array}$

plot(data11\$V2)


 $\label{eq:data11} $$ $\operatorname{read.table}(\c''C:/20191220/20191220-0022/20191220-0022_24.csv'', skip=6, sep=",", nrows=6000)$$

spectrum(data11\$V2,method="ar")

 $\label{eq:condition} \begin{array}{lll} data11 & <& read.table ("C:/20191220/20191220-0022/20191220-0022_24.csv", & skip=6, sep=",", nrows=6000) \end{array}$

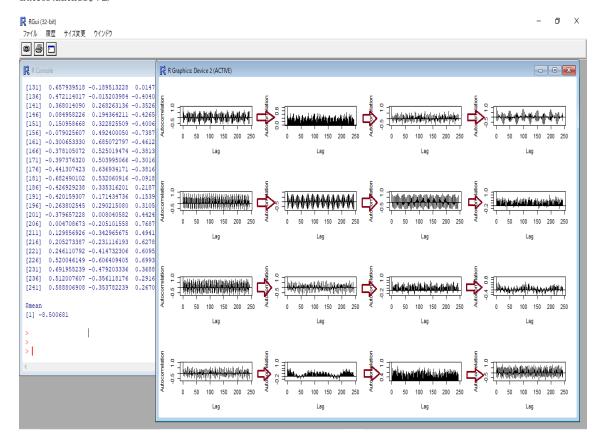
bispec(data11\$V2)

data11 <- read.table("C:/20191220/20191220-0022/20191220-0022_24.csv", skip=6, sep=",", nrows=6000) autcor(data11\$V2)

3) 以下のようにテキストデータをコピーしてRの画面にペーストすると 自己相関の変化をグラフで確認できます

下記をコピー&ペースト

par(mfrow=c(4,4))


 $\label{lem:data11 <- read.table ("C:/2024/20240301-0002/20240301-0002_01.csv", skip=6, sep=",", nrows=15000) autcor(data11$V2)}$

 $\label{lem:condition} $$ \frac{15000}{15000} = \frac{15000}{15000} - \frac{1$

 $\label{lem:condition} $$ \frac{15000}{15000} = \frac{15000}{15000} - \frac{1$

. . .

 $\label{lem:condition} $$ \frac{15000}{1000} = \frac{1000}{1000} - \frac{$

4) 以下のようにテキストデータをコピーしてRの画面にペーストすると **バイスペクトルの変化**をグラフで確認できます

下記をコピー&ペースト

par(mfrow=c(4,4))

 $\label{lem:condition} $$ \frac{1}{\sqrt{2024/20240301-0002/20240301-0002_01.csv'', skip=6, sep=",", nrows=6000) bispec(data11$V2) } $$$

 $\label{lem:condition} $$ \frac{11 < -\text{ read.table("C:/2024/20240301-0002/20240301-0002_02.csv", skip=6, sep=",", nrows=6000) }{\text{bispec(data11$V2)}} $$$

 $\label{lem:condition} $$ \frac{1}{\sqrt{2024/20240301-0002/20240301-0002_03.csv'', skip=6, sep=",", nrows=6000) bispec(data11$V2) } $$$

 $\label{lem:condition} $$ \frac{11 < -\text{read.table}(\text{"C:/2024/20240301-0002/20240301-0002_04.csv"}, \text{ skip=6, sep=",", nrows=6000) bispec(data11$V2)} $$$


. . .

 $\label{lem:condition} $$ \frac{11 < \text{read.table("C:/2024/20240301-0002/20240301-0002_29.csv", skip=6, sep=",", nrows=6000) bispec(data11$V2) } $$$

 $\label{lem:condition} $$ \frac{11 < -\text{ read.table}(\text{"C:/2024/20240301-0002/20240301-0002_30.csv"}, \text{ skip=6, sep=",", nrows=6000) bispec(data11$V2)} $$$

 $\label{lem:condition} $$ \frac{11 < \text{read.table}(\text{C:/2024/20240301-0002/20240301-0002_31.csv'', skip=6, sep=",", nrows=6000) } $$ bispec(data11$V2) $$$

 $\label{lem:condition} $$ $ \frac{11 < \text{read.table}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002_32.csv'', skip=6, sep=",", nrows=6000) } $$ $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002) } $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002) } $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002) } $$ $ \frac{11 < \text{conditions}(\text{C:/2024/20240301-0002/20240301-0002/20240301-0002) } $$ $ \frac{11 < \text{conditions}(\text{C:/2024$

実施例: バイスペクトルの変化を確認する

dev.off()
par(mfrow=c(3,2))

 $\label{eq:data11} $$ $\operatorname{read.table}(\c''C:/20191220/20191220-0022/20191220-0022_13.csv'', skip=6, sep=",", nrows=6000)$$

bispec(data11\$V2)

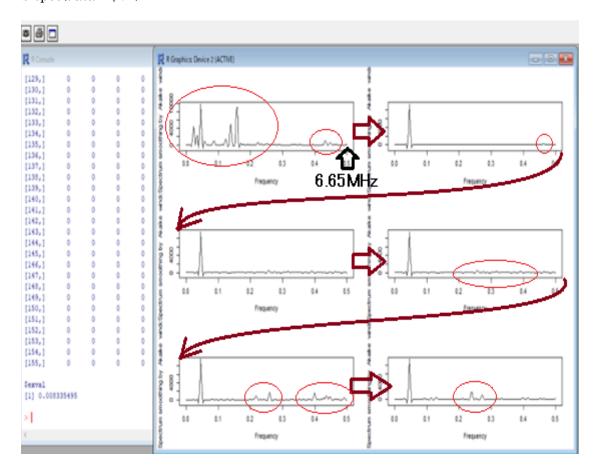
 $\label{eq:data11} $$ $$ read.table("C:/20191220/20191220-0022/20191220-0022_14.csv", skip=6, sep=",", nrows=6000)$$

bispec(data11\$V2)

 $\begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_15.csv", & skip=6, sep=",", nrows=6000) \end{array}$

bispec(data11\$V2)

 $\begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_16.csv", & skip=6, sep=",", nrows=6000) \end{array}$


bispec(data11\$V2)

data11 <- read.table("C:/20191220/20191220-0022/20191220-0022_17.csv", skip=6, sep=",", nrows=6000)

bispec(data11\$V2)

 $\begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_18.csv", & skip=6, sep=",", nrows=6000) \end{array}$

bispec(data11\$V2)

実施例:自己相関の変化を確認する

dev.off()
par(mfrow=c(3,2))

 $\label{eq:data11} $$ $\operatorname{read.table}(\c''C:/20191220/20191220-0022/20191220-0022_13.csv'', skip=6, sep=",", nrows=6000)$$

autcor(data11\$V2)

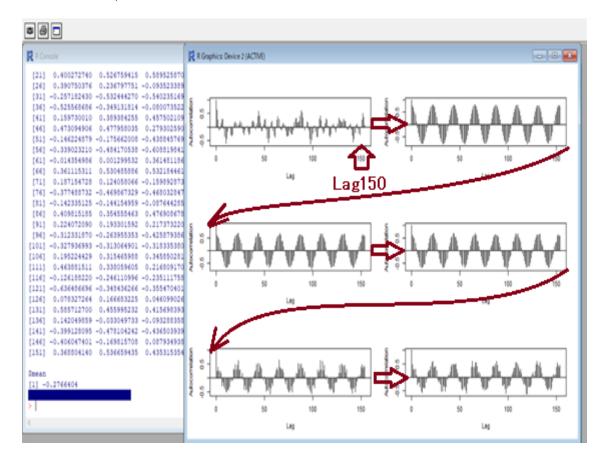
 $\label{eq:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_14.csv", & skip=6, sep=",", nrows=6000) \end{array}$

autcor(data11\$V2)

 $\label{eq:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_15.csv", & skip=6, sep=",", nrows=6000) \end{array}$

autcor(data11\$V2)

 $\label{lem:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_15.csv", & skip=6, sep=",", nrows=6000) \end{array}$


autcor(data11\$V2)

 $\label{eq:data11} $$ $$ read.table("C:/20191220/20191220-0022/20191220-0022_17.csv", skip=6, sep=",", nrows=6000)$$

autcor(data11\$V2)

 $\label{eq:condition} \begin{array}{lll} data11 &<& read.table ("C:/20191220/20191220-0022/20191220-0022_18.csv", & skip=6, sep=",", nrows=6000) \end{array}$

autcor(data11\$V2)

解析の詳細・解析結果の解釈・・・については 以下の参考書籍・・・の専門書を読んでください

参考書籍

- 1:統計数理
 - 1) 叩いて超音波で見る―非線形効果を利用した計測 佐藤 拓宋 (著) 出版社: コロナ社 (1995/06)
 - 2)電気系の確率と統計 佐藤 拓宋(著) 出版社: 森北出版(1971/01)
 - 3)不規則信号論と動特性推定宮川 洋 (著), 佐藤拓宋 (著), 茅 陽一 (著)出版社: コロナ社 (1969)
 - 4) 赤池情報量規準 AIC—モデリング・予測・知識発見 赤池 弘次 (著), 室田 一雄 (編さん), 土谷 隆 (編さん) 出版社: 共立出版 (2007/07)
 - 5) ダイナミックシステムの統計的解析と制御 赤池 弘次 (著), 中川 東一郎 (著) 出版社: サイエンス社(1972)
- 2:超音波技術
 - 1) 超音波工学と応用技術 ベ.ア.アグラナート (他共著),青山 忠明 (訳),遠藤 敬一 (訳) 発行年月:1991 出版社: 日ソ通信社
 - 2) 超音波入門 (科学普及新書) エリ・デ・ローゼンベルク 著, 上田光隆 訳 発行年月:1967 出版社:東京図書

参考資料

超音波の相互作用を評価する技術 2 http://ultrasonic-labo.com/?p=12202

超音波加工・溶接技術(特開 2021-171909) http://ultrasonic-labo.com/?p=3963

A I C (情報量規準) を利用した超音波技術 http://ultrasonic-labo.com/?p=1074

超音波技術:多変量自己回帰モデルによるフィードバック解析 http://ultrasonic-labo.com/?p=15785

<<超音波の音圧データ解析・評価>>

1) 時系列データに関して、

多変量自己回帰モデルによるフィードバック解析により

測定データの統計的な性質(超音波の安定性・変化)について解析評価します

2) 超音波発振による、発振部が発振による影響を

インパルス応答特性・自己相関の解析により

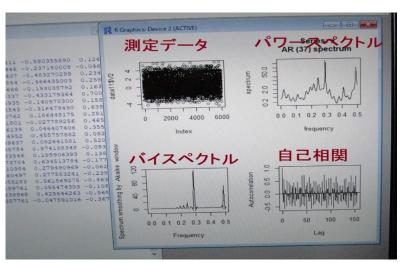
対象物の表面状態・・に関して、超音波振動現象の応答特性として解析評価します

- 3)発振と対象物(洗浄物、洗浄液、水槽・・)の相互作用をパワー寄与率の解析により評価します
- 4) 超音波の利用(洗浄・加工・攪拌・・)に関して 超音波効果の主要因である対象物(表面弾性波の伝搬) あるいは対象液に伝搬する超音波の非線形(パイスペクトル解析結果)現象により 超音波のダイナミック特性を解析評価します

この解析方法は、

複雑な超音波振動のダイナミック特性を

時系列データの解析手法により、


超音波の測定データに適応させるこれまでの経験と実績に基づいて実現しています。

超音波の伝搬特性

- 1)振動モードの検出(自己相関の変化)
- 2) 非線形現象の検出(バイスペクトルの変化)
- 3) 応答特性の検出(インパルス応答の解析)
- 4) 相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境

autcor:自己相関の解析関数 bispec:バイスペクトルの解析関数 mulmar:インパルス応答の解析関数 mulnos:パワー寄与率の解析関数

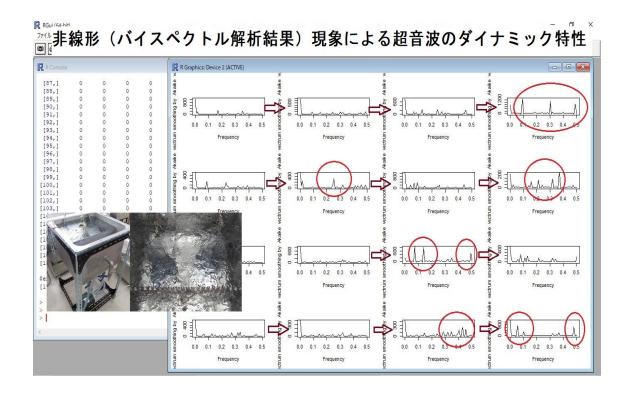
解析ソフトについて

TIMSAC for R package 統計数理研究所 November 1, 2006

TIMSAC(TIMe Series Analysis and Control program package) は、統計数理研究所で開発された時系列データの解析、予測、制御のための総合的プログラムパッケージです.・・・

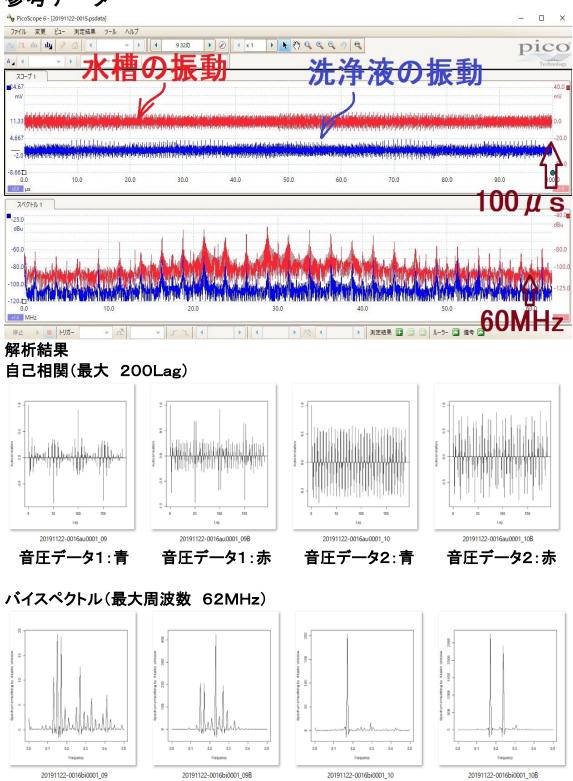
TIMSAC はFORTRANで書かれたプログラムですが、ユーザーが作成した FORTRAN, C, Java のプログラムにこのライブラリをリンクすることにより、より扱い易い環境が実現されました.

バイスペクトルの解析関数


bispec():バイスペクトルの計算

自己相関の解析関数

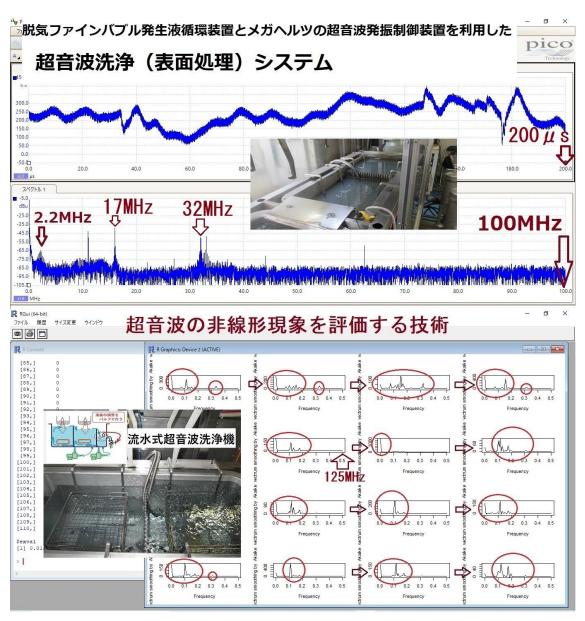
autcor():直接法による自己共分散関数の計算


3) TIMSAC for R package

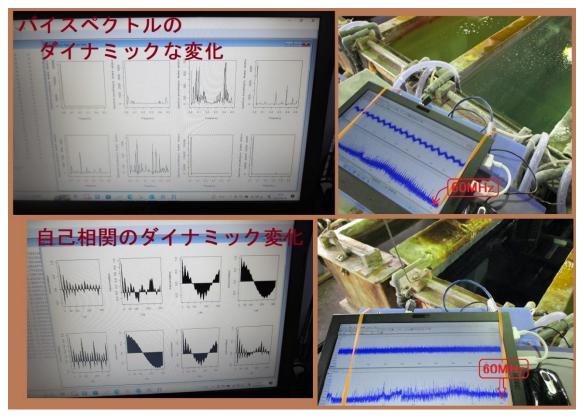
http://jasp.ism.ac.jp/ism/timsac/

参考データ

音圧データ1:青

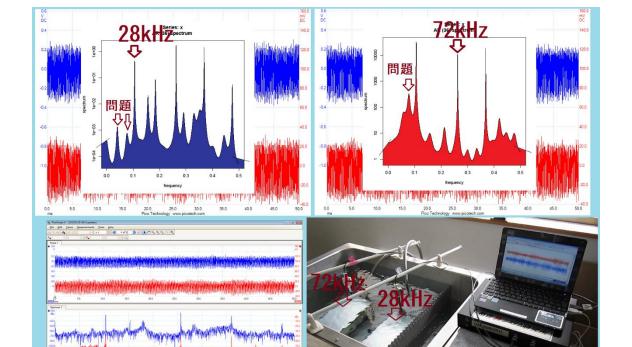


100 μ 秒でこのような音圧変化を実現することが、新しい超音波制御技術です


音圧データ2:青

音圧データ2:赤

音圧データ1:赤



超音波「音圧測定解析装置(超音波テスターNA)」 http://ultrasonic-labo.com/?p=1722

超音波発振制御システム(20MHz) http://ultrasonic-labo.com/?p=18817

超音波システム(音圧測定解析、発振制御)の利用技術 http://ultrasonic-labo.com/?p=16477

洗浄効果の非常に高い事例1

洗浄効果の非常に高い事例2

